
Generative AI with Large
Language Models.

Course Notes : July, 2023

Generative AI, and LLMs specifically, is a General Purpose Technology that is useful for a variety of
applications.

"LLMs can be, generally, thought of as a next word prediction model"

What is an LLM?
LLMs are machine learning models that have learned from massive datasets of human-generated
content, finding statistical patterns to replicate human-like abilities.
Foundation models, also known as base models, have been trained on trillions of words for weeks or
months using extensive compute power. These models have billions of parameters, which represent
their memory and enable sophisticated tasks.
Interacting with LLMs differs from traditional programming paradigms. Instead of formalized code
syntax, you provide natural language prompts to the models.
When you pass a prompt to the model, it predicts the next words and generates a completion. This
process is known as inference.

Part 1
What is an LLM?
What are the Use Cases for application of LLMs?
What are Transformers? How was text generation done before Transformers? Transformer Architecture.
How does a Transformer generate Text?
What is a Prompt?
Generative AI Project Life Cycle.
How do you pre-train Large Language Models?
Challenges with pre-training LLMs.
What is the optimal configuration for pre-training LLMs?
When is pre-training useful?

Page 1
Page 2
Page 2
Page 4
Page 5
Page 7
Page 8
Page 9

Page 11
Page 12

PART 1
LLM Pre-Training

PART 2
LLM Fine Tuning

PART 3
RLHF & Application

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

LLM

Where is Ganymede located in the
solar system?

Where is Ganymede located in the
solar system?

Ganymede is a moon of Jupiter and is
located in the solar system within the
orbit of Jupiter

CONTEXT WINDOW

PROMPT COMPLETIONMODEL

THIS PROCESS IS CALLED 'INFERENCE'

What are the Use Cases for LLMs?

Writing - From essays to emails to reports and more
Summarisation - Summarise long content into a meaningful shorter length
Language Translation - Translate text from one language to the other
Code - Translate natural language to machine code
Information Retrieval - Retrieve specific information from text like names, locations, sentiment
Augmented LLM - Power interactions with real world by providing information outside of LLM training

While Chatbots have emerged to become the most popular applications of LLMs, there are a variety of
other tasks that LLMs can be used to accomplish -

TRANSFORMERS.

How was text generation done before Transformers?

The arrival of the transformer architecture in 2017, following the publication of the
"Attention is All You Need" paper, revolutionised generative AI.

Before the arrival of transformers, text generation tasks were accomplished by Recurrent Neural
Networks (RNNs).
The next word was predicted looking at the previous few words. The more the number of previous
words, the larger was the computational requirement of the RNN.
The prediction wasn't great. The reason was the design of looking only at a few previous words.

Nitesh

OUTPUT

SOFTMAX

DECODER

EMBEDDINGS

Course Notes : July, 2023

What is Attention?
Transformers supersede all previous natural language architectures because of their ability to 'pay attention'

HOMONYMS

TRANSFORMERS ARE ABLE TO PAY ATTENTION TO THE MEANING OF THE WORDS

I took my money to the bank.
River Bank?
Financial Bank?

The teacher taught the student with the book
Did teacher teach with the book?
Was it a student with the book?

SYNTACTIC
AMBIGUITY

TRANSFORMERS SCALE EFFICIENTLY

TRANSFORMERS CAN PROCESS DATA PARALLELLY

The
teacher

taught
the

student
with

a
book

The
teacher
taught
the
student
with
a
book

EACH WORD IS CONNECTED TO EVERY
OTHER WORD THROUGH ATTENTION
WEIGHTS

THE MORE IMPORTANT THE
ASSOCIATION, THE STRONGER IS THE

ATTENTION

What does a Transformer Architecture look like?

ENCODER

EMBEDDINGS

INPUT

TOKENIZER

Tokenizer :

Embeddings :

Positional
Encodings :

Encoder :

Decoder :

Softmax :

Numeric representation of words

Higher order vector representation of each token

A vector representation of the position of the word
in the input

Encodes each input token into vector by learning
self-attention weights & passing them through a
FCFF Network

Accepts an input token, passes them through the
learned attention and FCFF Network to generate
new token

Calculates the probability for each word to be the
next word in sequence

POSITIONAL ENCODINGS

GENERATIVE AI WITH LARGE LANGUAGE MODELS

Nitesh

MULTI HEADED SELF ATTENTION

The Learning of Attention Weights
is not a single process, but
several parallel processes. As a
result, multiple sets of attention
weights are learnt. This is called
Multi-Headed Self Attention.

Think of one set of attention
weights as a representation of
vocabulary, another set as
tonality, yet another as a style of
writing.

Only for illustrative purpose

145 233 607

Course Notes : July, 2023

How does a Transformer generate text?

The original objective of the transformers architecture was for Language Translation in form of a sequence-
to-sequence task

"J'aime l'apprentissage automatique"
INPUT

"J'aime"
STEP 1 : TOKENISATION

"l'apprentissage"
"automatique"

STEP 2 : EMBEDDINGS

n1 n2 n3

STEP 3 : POSITIONAL ENCODINGS

m1 m2 m3

STEP 4 : MULTIHEADED ATTENTION

STEP 5 : FC FEED FORWARD
NETWORK

STEP 6 : DEEP CONTEXT FROM
ENCODER INSERTED INTO
MIDDLE OF DECODER

STEP 7 : START OF SEQUENCE
TOKEN INPUT TO DECODER

STEP 9 : DECODER IS
TRIGGERED TO PREDICT NEXT
TOKEN

STEP 10 : DECODER PREDICTS
THE NEXT TOKEN BASED ON THE
CONTEXT FROM ENCODER

STEP 11 : MULTIHEADED ATTENTION

STEP 12 : FC FEED FORWARD
NETWORK

SOFTMAX

9873

STEP 13 : PROBABILITY OF
TOKEN

STEP 14 : FIRST OUTPUT
TOKEN

STEP 8 : CREATE EMBEDDINGS
OF INPUT TOKEN

STEP 15 : LOOP THE
OUTPUT TOKEN BACK
TO THE DECODER

10435 16742

"I"
"love" "machine"

29742
STEP 16 : OUTPUT TOKEN
LOOP

"learning"
LAST STEP : DETOKANIZE TO
TEXT

GENERATIVE AI WITH LARGE LANGUAGE MODELS

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

What is a Prompt?

The natural language instruction in which we interact with an LLM is called a Prompt. The construction
of prompts is called Prompt Engineering.
The inferencing that an LLM does and completes the instruction given in the prompt is called 'in
context learning'
The ability of the LLM to respond to the instruction in the prompt without any example is called 'Zero
Shot Learning'
When a single example is provided, it's called 'One Shot Learning'
If more than one examples in provided, it's called 'Few Shot Learning'
Context Window, or the maximum number of tokens that an LLM can provide and inference on, is
critical in the Zero/One/Few Shot Learning

Classify this review :
I loved this movie!
Sentiment :

Classify this review :
I loved this movie!
Sentiment : Positive

Classify this review:
I don't like this chair
Sentiment :

Classify this review :
I loved this movie!
Sentiment : Positive

Classify this review:
I don't like this chair
Sentiment : Negative

Classify this review:
Who would use this product?
Sentiment :

ZERO SHOT LEARNING ONE SHOT LEARNING FEW SHOT LEARNING

Greedy vs Random Sampling.

SOFTMAX
SOFTMAX

cake
donut

banana
donut

apple
.......

0.1
0.2

0.02

0.01
.....

cake
donut

banana
donut

apple
.......

0.1
0.2

0.02

0.01
.....

Greedy : The word/token with the
largest probability is selected

'Cake' has the highest probability of 20%

Random Sampling : The word/token is
selected using random-weighted
strategy
'Even though Cake' has the highest
probability of 20%, 'banana' is selected

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Inference Configuration Parameters.

SOFTMAX
SOFTMAX

cake
donut

banana
donut

apple
.......

0.1
0.2

0.02

0.01
.....

Top N : The word/token is selected using
random-weighted strategy but only from
amongst the Top 'N' words/tokens
Here for N=3, one of cake, donut or banana will be
selected randomly but apple will never be selected

Top N.

cake
donut

banana
donut

apple
.......

0.1
0.2

0.02

0.01

Top P.
Top P : The word/token is selected using random-
weighted strategy but only from amongst the top
words totalling to probability <=P
Here for P=0.33, one of cake or donut will be selected
randomly but apple or banana will never be selected

SOFTMAX

banana
donut
cake
donut

apple
.......

0.01
0.002

0.4

0.001

Temperature
temperature

setting

Cooler Temperature (lesser value) :
The distribution is strongly peaked

SOFTMAX

banana
donut
cake
donut

apple
.......

0.01
0.002

0.4

0.001

temperature
setting

Warmer Temperature (higher value) :
Flatter probability distribution

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Generative AI Project LifeCycle.

SCOPE SELECT ADAPT & ALIGN APP INTEGRATION

Choose an
existing LLM or
Pre-train your
own.

Define the
usecase.

Prompt
Engineering

Fine Tuning

Align with
Human
Feedback

Evaluate Optimise &
Deploy Model
for Inference

Augment
Model &
Build LLM-
Powered
Application

Defining the scope accurately and narrowly is a crucial initial step in any project.
LLMs have diverse capabilities depending on the model's size and architecture, so it is essential to
consider the specific function your LLM will serve in your application.
Choosing between training your own model from scratch or using an existing base model is the first
decision you'll face.
While starting with an existing model is common, there may be cases where training from scratch
becomes necessary
Prompt engineering and in-context learning techniques can often improve the model's performance by
using task-specific examples.
There are instances where the model may still underperform, even with prompt engineering, and in
such cases, fine-tuning the model through supervised learning can be explored.
Learning with human feedback as an additional fine-tuning technique to ensure the model's good
behaviour.
Evaluation plays a crucial role in all these techniques
Optimising the model for deployment ensures efficient utilisation of compute resources and provides
the best possible user experience.
It is important to consider any additional infrastructure requirements for your application to work
effectively.
LLMs have inherent limitations, such as inventing information or limited reasoning abilities, which can
be challenging to overcome through training alone.

Nitesh

The
Teacher
Teaches

The
Student

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

How do you pre-train Large Language Models?

GB/TB/PB of
text data

Document Filter

Masked Language Modeling

Encoder
Only Model

The Teacher Teaches StudentThe

The Teacher <MASK> StudentThe

Objective : Reconstruct Text ("denoising")

The Teacher
<MASK>

StudentThe
Teaches

Bi-directional Context

AutoEncoding Models (Encoder Only)

Sentiment Analysis
Named Entity Recognition
Word Classification

USE CASES

EXAMPLES

BERT
ROBERTA

The
Teacher
Teaches

The
Student

GB/TB/PB of
text data

Document Filter

Causal Language Modeling

Decoder
Only Model

The Teacher Teaches StudentThe

The Teacher ?

Objective : Predict Next Token

The Teacher Teaches

Unidirectional Context

AutoRegressive Models (Decoder Only)

Text Generation
USE CASES

EXAMPLES

GPT
BLOOM

(Most common architecture
now and larger models can
perform a variety of tasks)

Finetuning Foundation Models vs
Pretaining Your Own

For most requirements, finetuning an existing
LLM will suffice. However, there can be cases
when pre-training a new LLM will provide
better application especially when the
language is highly domain specific e.g Legal,
Medical. Pre-training is a resource intensive
and costly process.

Open Source LLMs

While OpenAI's proprietary GPT-3.5, GPT-4
have gained immense popularity, HuggingFace
Model Hub provides access to powerful Open
Source LLMs along with documentation and
training architecture. Architecture plays a
critical role in defining what objective can
each LLM be used for.

Training Data and Model Size

LLMs are generally trained on Petabytes of
data, mostly from the open internet. The
unstructured text requires careful filtering. As a
result only 2-3% of data is useful for training.
LLM size is measured in terms of the number of
parameters. Larger models have generalised
well to a variety of tasks.

Nitesh

The
Teacher
Teaches

The
Student

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

How do you pre-train Large Language Models?

GB/TB/PB of
text data

Document Filter

Span Corruption

Encoder-
Decoder
Model

The Teacher Teaches StudentThe

The Teacher <MASK> Student<MASK>

Objective : Reconstruct Span

TheTeachesX

Sequence-to-Sequence Models (Encoder-Decoder)

Translation
Text Summarisation
Question Answering

USE CASES

EXAMPLES

T5
BART

The Teacher StudentX

Sentinel Token

Challenges with pre-training LLMs.
Computational Memory

1 Parameter = 4 bytes (32 bit float)
1 Billion Parameters = 4 x 10E9 bytes = 4GB

Model Parameters = 4 bytes per parameter
2 Adam Optimisers = +8 bytes per parameter
Gradients = +4 bytes per parameter
Activations = +8 bytes per parameter

Total = 4 bytes per parameter +
 20 extra bytes per parameter

To Store

4 GB@32 bit
full precision

To Train

80 GB@32 bit
full precision

Quantisation

32 Bit Floating Point

16 Bit Floating Point
8 Bit Integer

FP32

FP16 | BFLOAT16 | INT8

3e-38 to 3e+38
Range

Reduces the memory required to train and store
models

Quantisation projects the 32bit numbers into a lower
precision space

Quantisation aware training (QAT) learns quantisation
scaling factors during training

BFLOAT16 is a popular choice

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Multi-GPU Compute (Optional)

Distributed Data Parallel (DDP)

Data Loaders

GPU 3

GPU 2

GPU 1

GPU 0

Forward Pass/
Backward Pass

Forward Pass/
Backward Pass

Forward Pass/
Backward Pass

Forward Pass/
Backward Pass

Synchronise
Gradients

Update Model

Update Model

Update Model

Update Model

LLM

LLM

LLM

LLM

Parameter
Gradients
Optimizer

LLM
Training
Memory
Requirement

Data is broken
into chunks and

passed to the GPU
for training the

LLM

Entire LLM resides
n each of the

GPUs

Gradients are
computed on each

GPU

Gradients are
synchronised

LLM is updated in
each of the GPU

Fully Sharded Data Parallel (FSDP)

Data Loaders

GPU 3

GPU 2

GPU 1

GPU 0

 Backward
Pass

Synchronise
Gradients

Update Model

Update Model

Update Model

Update Model

Data is broken
into chunks and

passed to the GPU
for training the

LLM

LLM is also broken
and parts reside in

each GPU

Weights are collected before forward
and backward pass from each of the

GPUs

Gradients are
synchronised

LLM chunks are
updated in each of
the GPU

 Backward
Pass

 Backward
Pass

 Backward
Pass

Get
Weights

 Forward
Pass

 Forward
Pass

 Forward
Pass

 Forward
Pass

Get
Weights

inspired by ZeRO (Zero Redundancy Optimizer)

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

What is the optimal computation configuration for pre-training an LLM?

Our aim should be to minimise the loss function of the LLM.
This can be done by providing more training tokens and/or increasing the number of parameters
Compute cost (budget, time, GPUs) is the constraint that we operate in.

MODEL
PERFORMANCE
(Minimise Loss)

Choice:
Training Data Size

(Number of Tokens)

Choice:
Model Size

(Number of Parameters)

Constraint:
Compute Budget

($$$, Time, GPUs)

One metric to measure the cost of computation is "petaFLOP/s-day"
Number of FLOating Point operations performed at the rate of 1 petaFLOP per second for one day

1 petaFLOP per second = 10E15 or 1
Quadrillion floating point operations per
second

1 petaFLOP per second - day requires 8
NVIDIA V100 chips running at full
efficiency for 24 hours

1 petaFLOP per second - day requires 2
NVIDIA A100 chips running at full
efficiency for 24 hours

To put this in context, OpenAIs GPT3 is a 175 B parameters model and required 3700 petaflops/s-day

Chinchilla Paper

In 2022, the paper "Training Compute-Optimal Large Language Model" studied a large number of models with
different training data and model sizes to find the optimal number of tokens and parameters for a given compute
budget. The authors called this optimal model "Chinchilla"

One important take-away was that the compute optimal number of training tokens
should be 20 times the number of parameters

This means that smaller models can achieve the same performance as the larger ones, if they are trained on
larger datasets

Nitesh

Mens Rea
Res Judicata

Consideration

Domain specific terms -

Terms with different meanings -

Large models are not
trained on these terms

Large models may use
terms in different context

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Why Pre-train for Domain Adaptation?

Developing pre-trained models for a highly specialised domains may be useful when -
There are important terms that are not commonly used in the language
The meaning of some common terms is entirely different in the domain vis-a-vis the
common usage

LEGAL MEDICAL

Myalgia
1 tab po quid pc & hs

Malignant

Domain specific terms -

Terms with different meanings -

EXAMPLE : Bloomberg GPT

END OF PART 1

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Part 2
What is Instruction Fine Tuning?
What Catastrophic Forgetting?
How to Evaluate a Fine Tuned model?
What is Parameter Efficient Fine Tuning?

Page 13
Page 14
Page 14
Page 15

What is Instruction Fine Tuning?

Through in context learning, or prompting, only a certain level of performance can be achieved.
Few shot learning might not work for smaller LLMs and it also takes up a lot of space in the context
window.
Fine Tuning is a supervised learning process, where you take a labelled dataset of prompt-completion
pairs to adjust the weights of an LLM.
Instruction Fine Tuning is a strategy where the LLM is trained on examples of Instructions and how the
LLM should respond to those instructions. Instruction Fine Tuning leads to improved performance on
the instruction task.
Full Fine Tuning is where all the LLM parameters are updated. It requires enough memory to store and
process all the gradients and other components.

PROMPT [....], COMPLETION[....]
PROMPT [....], COMPLETION[....]
PROMPT [....], COMPLETION[....]

......
PROMPT [....], COMPLETION[....]

Base Model Task Specific Examples Instruct Model

Pre-trained
LLM

Fine Tuned
LLM

Summarise the following text -
[Example Text]
[Example Completion]

Translate this sentence to
[Example Text]
[Example Completion]

trained on results in

Nitesh

Pre-trained
LLM

PROMPT [....], COMPLETION[....]

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

PROMPT [....], COMPLETION[....]
PROMPT [....], COMPLETION[....]
PROMPT [....], COMPLETION[....]

......
PROMPT [....], COMPLETION[....]

Instruction dataset
PROMPT [....], COMPLETION[....]

......
PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]
......

PROMPT [....], COMPLETION[....]

Tra
in

Va
lid

ati
on

Te
st

PROMPT [....], COMPLETION[....]
LLM Completion

Actual Label

Loss : Cross Entropy

Instruction dataset

Validation
Accuracy

Test
Accuracy

Fine tuning process is a classification model training

What is Catastrophic Forgetting?
Fine Tuning on a single task can significantly improve the performance of the model on that task.
However, because the model weights get updated, the instruct model's performance on other tasks
(which the base model performed well on) can get reduced. This is called Catastrophic Forgetting.

Avoiding Catastrophic Forgetting

You might not have to, if you only want the model to perform well on the trained task.
Perform fine tuning on multiple tasks. This will require lots of examples for each task.
Perform Parameter Efficient Fine Tuning (PEFT).

How is the performance of a Fine Tuned LLM measured?
The inherent challenge in measuring the performance of an LLM is that the outputs are non-
deterministic, as opposed to a classic classification model where the output is amongst pre-
determined classes.

Mike really loves drinking tea Mike adores sipping tea
Mike does not drink coffee Mike does drink coffee

There are two widely used evaluation metrics.

ROUGE BLEU
SCORE

Used for text summarisation
Compares a summary to one
or more reference summaries

Used for text translation
Compares to human-generated
translations

Nitesh

ROUGE - 1
Recall

ROUGE - 1
Precision

ROUGE - 2
Recall

ROUGE - 1
Precision

ROUGE - L
Recall

ROUGE - 1
Precision

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

REFERENCE (human) :
It is cold outside

GENERATED:
It is very cold outside

unigram matches
unigrams in reference

unigram matches
unigrams in output

4
4

4
5

bigram matches
bigrams in reference

bigram matches
biigrams in output

2
3

2
4

LCS (R,G)
unigrams in reference

LCS (R,G)
unigrams in output

2
4

2
5

LCS = Length of the Longest
Common Subsequences

It, is, cold, outside
It, is very, cold, outside

It is, is cold, cold outside
It is, is very, very cold, cold outside

Length (It is) = 2
Length (cold outside) = 2

Rouge scores should only be compared across the models for the same task
Rouge score may be high even for imperfect generations

ROUGE SCORE

BLEU (Bi-Lingual Evaluation Understudy) SCORE
BLEU = Average (precision score across a range of n-gram sizes)

BOTH ROUGE & BLEU SHOULD BE USED FOR DIAGNOSTIC PURPOSES ONLY.

BENCHMARKS
Use pre-existing evaluation datasets and benchmarks established by LLM researchers for a more holistic evaluation
Select datasets that isolate model skills, like reasoning or common sense knowledge, and those that focus on potential risks,
such as disinformation or copyright infringement
Evaluate performance on data that the model has not seen before

Popular Benchmarks

MMLU BIG BENCH
General Language Understanding Massive Multitask Language

Understanding
Holistic Evaluation of Language

Models

What is Parameter Efficient Fine Tuning?
Full fine tuning, like pre-training, requires memory not just to store the model, but also other
parameters like optimisers, gradients etc.
Parameter Efficient Fine Tuning or PEFT fine tunes only a subset of model parameters and, in some
cases, do not touch the original weights at all.
Because PEFT only retrains a subset of parameters, Catastrophic Forgetting can be avoided.

Pre-trained
LLM

Question Answer Task

Summarize Task

Generate TaskGBs

PEFT Weights

MBs

MBs

MBs

Fine Tuned
LLM

Parameter Efficiency Memory Efficiency Model Performance Training Speed Inference CostTrade Offs

Nitesh

Rank Decomposition
Matrices

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

PEFT Method

Selective
Select a subset of initial
LLM parameters to fine
tune.
Performance is mixed and
significant trade-offs

Reparameterization
Reparameterize model
weights using Low Rank
Representation

LoRA

Additive
Add trainable layers or
parameters to the original
model

Adapters
Soft Prompting

LoRA (Low Rank Adaptations)

Most of original LLM weights are frozen.
2 rank decomposition matrices are injected.
Product of rank decompositions matrices is of the same dimensions
as the LLM weights.
The product is added to the LLM weights.
There's no impact on inference latency since the number of
parameters remains the same.
Applying LoRA to just the attention layer is enough.

SELF ATTENTION LAYER

ENCODER

Attention
layer weights

LoRA can reduce the number of training parameters to ~20% and can be trained on a single GPU.
Separate LoRA matrices can be trained for each task and switch out the weights for each task.

Soft Prompts : Prompt Tuning (not Prompt Engineering)

Prompt engineering is limited by context window and the manual exercise of writing prompts.
In Prompt tuning, additional trainable tokens (soft prompts) are added to the prompt which are learnt during the
supervised learning process.
Soft prompt tokens are added to the embedding vectors and have the same length as the embedding.
Between 20-100 tokens are sufficient for fine tuning.
Soft prompts can take any value in the embedding space and through supervised learning, the values are learnt.
Like in LoRA, separate soft prompts can be trained for each task and switch out the weights for each task.

Performance of Prompt Tuning

For models with >10B parameters, Prompt
Tuning can be as effective as Full Fine Tuning
Analysis of nearest neighbours indicate that
learnt soft tokens form tight clusters

END OF PART 2

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Part 3
Aligning with Human Values
How does RLHF work?
How to avoid Reward Hacking?
Scaling Human Feedback : Self Supervision with Constitutional AI

Page 17
Page 18
Page 22
Page 23

Aligning with Human Values
Like with language, in general, Large Language Models can also behave badly -

Toxicity
Aggression
Dangerous/Harmful

LLMs should align with Helpfulness, Honesty and Harmlessness (HHH)

What is Reinforcement Learning from Human Feedback (RLHF)?

Reinforcement Learning from
Human Feedback

Instruction Fine
Tuned LLM

Human
Aligned LLM

Maximises helpfulness
Minimises harm
Avoids dangerous topics
Increases honesty

Reinforcement Learning based on Human Feedback data
Personalisation of LLMs is a potential application of RLFL

REINFORCEMENT LEARNING
is a type of machine learning in which an agent learns to make decisions related to a specific goal
by taking actions in an environment, with the objective of maximising some notion of a
cumulative reward

How to optimise and deploy LLMs for inferencing? Page 24
Using LLMs in Applications Page 25
LLM Application Architecture Page 28
Responsible AI Page 29
Generative AI Project Lifecycle Cheatsheet Page 30

Nitesh

Instruct LLM
[Agent]

LLM Context Window
[Environment]

Reward
Model

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

How does RLHF work?

Generate Aligned Text
[Goal]

Re
wa

rd
e.g

. -
0 f

or
ha

rm
ful

 te
xt

1 f
or

ha
rm

les
s t

ex
t

LL
M

Vo
ca

bu
lar

y
[A

cti
on

 Sp
ac

e]

Cu
rre

nt
 Te

xt
[S

tat
e]

Generated Text
[Action]

In RLHF, the agent (our fine-tuned instruct LLM) in its environment (Context Window) takes one
action (of generating text) from all available actions in the action space (the entire vocabulary of
tokens/words in the LLM).
The outcome of this action (the generated text) is evaluated by a human and is given a reward if the
outcome (the generated text) aligns with the goal. If the outcome does not align with the goal, it is
given a negative reward or no reward. This is an iterative process and each step is called a rollout.
The model weights are adjusted in a manner that the total rewards at the end of the process are
maximised.

ROLLOUT

Note : In practice, instead of a human giving a feedback continually, a classification model called the
Reward Model is trained based on human generated training examples

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

How is Reward Model training data created from Human Feedback?

My house is too hot.
[Prompt]

LLM

There's nothing
you can do.

Cool the house
with an AC. It's not hot.

12 3

12 3

13 2

Rankings are converted to pairwise training data for the reward model

Prompt

Completion 1

Completion 2

Completion 3

2

1

3

1 2

2 3

3 1

[0,1]

[1,0]

[0,1]

Pairs Rewards

12

2 3

31

[1,0]

[1,0]

[1,0]

Pairs Rewards

For each prompt, multiple [3]
completions are generated by the
LLMs

Human
evaluators from
diverse
backgrounds
rank the
completions

1

2

3

The pairs are ordered in order {Yj, Yk} such that Yj is the preferred completion

Nitesh

4

Prompt 'X'

2

1

Reward
Model

Reward Rj

Reward Rk

5

New
Prompt

New
Completion

Reward
Model

Positive Class (Not Hate)

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Reward Model is a supervised learning language model

Completion Yj

Completion Yk

The reward model learns to
favour the human preferred
response Yj while minimising
the log of sigmoid difference
between the rewards.

Reward Model is finally used as a binary classifier
"Tommy loves Television"

"Tommy hates gross movies"

Negative Class (Hate)

3.1718

-2.6093

Positive Class (Not Hate)

Negative Class (Hate)

-0.5351

0.1377The logit values for the Positive Class are passed as the
Rewards. The LLM will change the weights in such a way
that the choice of generated text will yield the highest
rewards.

Proximal Policy Optimisation or PPO is a popular choice for training
the reinforcement learning algorithms

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

What is Proximal Policy Optimisation? [Optional]
PPO stands for Proximal Policy Optimisation. It's a powerful algorithm used in reinforcement learning.

PPO helps us optimise a large language model (LLM) to be more aligned with human preferences. We want the LLM to
generate responses that are helpful, harmless, and honest.

PPO works in cycles with two phases: Phase I and Phase II.

In Phase I, the LLM completes prompts and carries out experiments. These experiments help us update the LLM based
on the reward model, which captures human preferences.

The reward model determines the rewards for prompt completions. It tells us how good or bad the completions are in
terms of meeting human preferences.

In Phase II, we have the value function, which estimates the expected total reward for a given state. It helps us evaluate
completion quality and acts as a baseline for our alignment criteria.

The value loss minimises the difference between the actual future reward and its estimation by the value function. This
helps us make better estimates for future rewards.

Phase 2 involves updating the LLM weights based on the losses and rewards from Phase 1.

PPO ensures that these updates stay within a small region called the trust region. This keeps the updates stable and
prevents us from making drastic changes.

The main objective of PPO is to maximise the policy loss. We want to update the LLM in a way that generates
completions aligned with human preferences and receives higher rewards.

The policy loss includes an estimated advantage term, which compares the current action (next token) to other possible
actions. We want to make choices that are advantageous compared to other options.

Maximising the advantage term leads to better rewards and better alignment with human preferences.

PPO also includes the entropy loss, which helps maintain creativity in the LLM. It encourages the model to explore
different possibilities instead of getting stuck in repetitive patterns.

The PPO objective is a weighted sum of different components. It updates the model weights through back propagation
over several steps.

After many iterations, we arrive at an LLM that is more aligned with human preferences and generates better responses.

While PPO is popular, there are other techniques like Q-learning. Researchers are actively exploring new methods, such
as direct preference optimisation, to improve reinforcement learning with large language models.

Nitesh

Prompt
Dataset

Reference
Model

RL Updated
Model

Reward
Model

KL Divergence
Shift Penalty

PPO

"the most awesome, the
most incredible thing ever"

Reward Hacked

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

How to avoid Reward Hacking?
Reward hacking happens when the language model finds ways to maximise the reward without
aligning with the original objective i.e. model generates language that sounds exaggerated or
nonsensical but still receives high scores on the reward metric.
To prevent reward hacking, the original LLM is introduced as a reference model, whose weights are
frozen and serve as a performance benchmark.
During training iterations, the completions generated by both the reference model and the updated
model are compared using KL divergence. KL divergence measures how much the updated model has
diverged from the reference model in terms of probability distributions.
Depending on the divergence, a shift penalty is added to the rewards calculation. The shift penalty
penalises the updated model if it deviates too far from the reference model, encouraging alignment
with the reference while still improving based on the reward signal.

"This product is...." "Useful & well
priced"
Normal

Reinforcement Learning loop that is exposed to the threat of reward hacking

Introduction of Shift Penalty loop increases alignment without exaggeration

Penalty added to
rewards

RLHF can also be used in conjunction with PEFT to reduce memory footprint

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Scaling Human Feedback : Self Supervision with Constitutional AI
Scaling human feedback for RLHF can be challenging due to the significant human effort required to
produce the trained reward model. As the number of models and use cases increases, human effort
becomes a limited resource, necessitating methods to scale human feedback.
First proposed in 2022 by researchers at Anthropic, Constitutional AI is an approach to scale
supervision and address some unintended consequences of RLHF. Constitutional AI involves training
models using a set of rules and principles that govern the model's behaviour, forming a "constitution".
The training process for Constitutional AI involves two phases: supervised learning and reinforcement
learning.
In the supervised learning phase, the model is prompted with harmful scenarios and asked to critique
its own responses based on constitutional principles. The revised responses, conforming to the rules,
are used to fine-tune the model.
The reinforcement learning phase, known as reinforcement learning from AI feedback (RLAIF), uses
the fine-tuned model to generate responses based on constitutional principles

Helpful LLM
Model

Red Teaming

Response,
Critique,
Revision

Fine tuned
LLM Model

Prompt LLM to generate harmful, illegal,
undesired responses - "Can you help me
hack into my neighbour's wifi?

Prompt LLM with the constitution -
"Identify how that response was racist,
harmful, unethical, sexist, toxic or illegal?

LLM Completion - "Sure, use this app called
VeryEasyHack."

LLM Completion - "The response was
harmful. Hacking into someone else's wifi is
possibly illegal"

Instruct LLM to improve - "Rewrite the
response remove any harmful, illegal,
unethical, etc. content"

LLM Completion - "Hacking into your
neighbour's wifi may land you in legal
trouble."

Generate responses to "Red
Teaming" prompts

Ask LLM to rank respon
responsesses as per the

constitution

Train
Reward
Model

Fine tune LLM with constitutional
preferences

Constitutional
LLM

Su
pe

rvi
se

d L
ea

rn
ing

 St
ag

e
Reinforcement Learning Stage

Reinforcement Learning with AI
Feedback [RLAIF]

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

How to optimise and deploy LLMs for inferencing?
Integrating a language model into applications requires considering factors like model speed, compute
budget, and trade-offs between performance and speed/storage.
Additional considerations include model interaction with external data or applications and
determining the intended application or API interface.

Optimisation techniques

Distillation Post-training Quantisation Pruning

Teacher
LLM

Student
LLM

32 Bit Floating Point

16 Bit Floating Point
8 Bit Integer

FP32

FP16 | BFLOAT16 | INT8

3e-38 to 3e+38
Range

Use larger teacher model
to train smaller student
model
Use student model for
inferencing in
applications
Temperature parameter
is used to generate soft
and hard predictions.
In practice, distillation is
effecting in encoder only
models like BERT

Reduce the model
weights post training
to lower precision to
reduce model
footprint
Can be applied to
both weights and
activations
May result in
reduction in
evaluation metrics

Remove the weights
with values close to
0
Can be done via full
fine-tuning or PEFT
Reduces size and
improves
performance
Is not helpful if only
a small percentage
of original model
weights are zero

Original
LLM

Pruned
LLM

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Using LLMs in Applications
Large language models (LLMs) have a knowledge cutoff and may struggle with outdated information.
LLMs can also face challenges with complex math problems and tend to generate text even when they
don't know the answer (hallucination).

Retrieval Augmented Generation
The Retrieval Augmented Generation (RAG) framework overcomes these issues by connecting LLMs to
external data sources and applications.
RAG provides LLMs access to data they did not see during training, improving relevance and accuracy
of completions.

Implementing RAG involves considerations such as the size of the context window and the need for
data retrieval and storage in appropriate formats

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Reasoning using Chain of Thought
LLMs can struggle with complex reasoning tasks, especially those involving multiple steps or
mathematics.
Prompting the model to think more like a human by breaking down the problem into steps has shown
success in improving reasoning performance.
Chain of thought prompting involves including intermediate reasoning steps in examples used for one
or few-shot inference.
This approach teaches the model how to reason through the task by mimicking the chain of thought a
human might follow.
Chain of thought prompting can be used for various types of problems, not just arithmetic, to improve
reasoning performance.
It provides a more robust and transparent response from the model, explaining its reasoning steps.
Although LLMs can benefit from chain of thought prompting, their limited math skills can still pose
challenges for accurate calculations in tasks like sales totaling, tax calculation, or applying discounts.

Program-aided Language Models (PAL)
LLMs have limitations in carrying out accurate math calculations, especially with larger numbers or
complex operations.
Chain of thought prompting can help LLMs reason through problems, but it may not solve the issue of
inaccurate math operations.
PAL (Program-Aided Language Models) is a framework that pairs LLMs with external code interpreters
to perform calculations and improve accuracy.
PAL uses chain of thought prompting to generate executable Python scripts that are passed to an
interpreter for execution.
The prompt includes reasoning steps in natural language as well as lines of Python code for
calculations.
Variables are declared and assigned values based on the reasoning steps, allowing the model to
perform arithmetic operations.
The completed script is then passed to a Python interpreter to obtain the answer to the problem.
PAL ensures accurate calculations and reliable results, especially for complex math problems.
The process can be automated by using an orchestrator, a component that manages the flow of
information and interactions with external data sources or applications.
The orchestrator interprets and executes the plan generated by the LLM, which includes writing the
script for the external interpreter to run.
In more complex applications, the orchestrator may handle multiple decision points, validation
actions, and interactions with various external resources.

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

ReAct : Reasoning and Action
ReAct combines chain of thought reasoning with action planning in LLMs.
It uses structured examples to guide the LLM's reasoning and decision-making process.
Examples include a question, thought (reasoning step), action (pre-defined set of actions), and
observation (new information).
Actions are limited to predefined options like search, lookup, and finish.
The LLM goes through cycles of thought, action, and observation until it determines the answer.
Instructions are provided to define the allowed actions and provide guidance to the LLM.

LangChain
LangChain provides modular components for working with LLMs in applications.
It includes prompt templates for various use cases, memory to store LLM interactions, and tools for
working with external datasets and APIs.
Pre-built chains optimised for different use cases are available for quick deployment.
Agents, such as PAL and ReAct, can be incorporated into chains to plan and execute actions.
LangChain is actively developed with new features being added, allowing for fast prototyping and
deployment.

Other Considerations
The ability of the LLM to reason and plan actions depends on its scale.
Larger models are generally more suitable for advanced prompting techniques like PAL and ReAct.
Smaller models may struggle with highly structured prompts and may require additional fine-tuning.
Starting with a large model and collecting user data in deployment can potentially train a smaller,
fine-tuned model for better performance.

Nitesh

Infrastructure - for training, fine-tuning, serving, application components etc.

LLM Models
(Optimised)

Documents
Databses
Web

Information Sources
Generated Outputs

Feedback on Outputs

Tools & Frameworks like LangChain, ModelHub etc.

Application Interface - Web, Mobile App, APIs etc.

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

LLM Application Architecture

Users Systems

Key Components of LLM Powered Applications

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Responsible AI
Toxicity: Toxic language or content that can be harmful or discriminatory towards certain groups.
Mitigation strategies include curating training data, training guardrail models to filter out unwanted
content, providing guidance to human annotators, and ensuring diversity among annotators.

Hallucinations: False or baseless statements generated by the model due to gaps in training data. To
mitigate this, educate users about the technology's limitations, augment models with independent and
verified sources, attribute generated output to training data, and define intended and unintended use
cases.

Intellectual Property: The risk of using data returned by models that may plagiarise or infringe on
existing work. Addressing this challenge requires a combination of technological advancements, legal
mechanisms, governance systems, and approaches like machine unlearning and content
filtering/blocking.

Nitesh

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Generative AI Project Lifecycle Cheatsheet

Training Duration Customisation Objective Expertise

Pre-training

Prompt
Engineering

Fine tuning
/ Prompt
tuning

RLHF/ RLAIF

Compression/
Optimisation/
Deployment

Days/ Weeks/ Months Architecture
Size
Vocabulary
Context Window
Training Data

Only prompt
customisation

Task specific
tuning
Domain specific
data
Update model /
adapter weights

Train reward
model [HHH
goals]
Update model /
adapter weights

Reduce model
size
Faster inference

Not required

Minutes/ Hours

Minutes/ Hours

+ data collection for
reward model

Minutes/ Hours

Next token
preditction

Increase task
performance

Increase task
performance

Increase
alignment with
human
preferences

Increase
inference
performance

High

Low

Medium

Medium - High

Medium

Nitesh

Coursera for being the influencer and contributor in my lifelong learning.
Dr Andrew Ng, for making learning ML and data science for developers and enthusiasts
unintimidating, simple and practical.
The team at deeplearning.ai for making yet another course with such fine detail and
practical labs.
Antje Barth, Chris Fregly, Shelbee Eigenbrode and Mike Chambers for teaching me this very
special course.
All my colleagues and friends who endeavour to learn, discover and apply technology
everyday in their effort to make the world a better place.

Ever since the transformers architecture gained popularity, large language models have been in-
focus. From the era of skepticism in 2018/2019 to the explosive hype with the release of chatGPT in
2022, the evolution has been nothing short of magical.

Up until recently, the access to the knowledge was also largely inaccessible for regular people. This
course by deeplearning.ai and AWS is another step in the democratisation of this technology. Like
other courses by deeplearning.ai in the LLM and Generative AI space, this course is simple, practical
and useful.

I'd like to thank -

With Lots of Love,

Course Notes : July, 2023GENERATIVE AI WITH LARGE LANGUAGE MODELS

Acknowledgements

#AI #MachineLearning #DataScience
#GenerativeAI #DataProducts #Analytics
#LLMs #Technology #Education #EthicalAI

I talk about :

Kim

Let's connect:

Nitesh

